import gradio as gr from transformers import T5Tokenizer, T5Model def inference(text): model_path = "t5-large" tokenizer = T5Tokenizer.from_pretrained(model_path) model = T5Model.from_pretrained(model_path) input_ids = tokenizer( text, return_tensors="pt" ).input_ids # Batch size 1 decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 # forward pass outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) print(outputs[0]) last_hidden_states = outputs.last_hidden_state return outputs[0] examples=[["Studies have been shown that owning a dog is good for you"]] with gr.Blocks() as demo: gr.Markdown( """ # Translation:t5-large Gradio Demo for t5-large. To use it, simply type in text, or click one of the examples to load them. """) with gr.Row(): text_input = gr.Textbox() text_output = gr.Textbox() image_button = gr.Button("上传") image_button.click(inference, inputs=text_input, outputs=text_output) gr.Examples(examples,inputs=text_input) demo.launch()