import gradio as gr from transformers import GPT2Tokenizer, GPT2Model from transformers import pipeline, set_seed def inference(text): model_path = "distilgpt2" generator = pipeline('text-generation', model=model_path) set_seed(42) output=[] lst=generator(text, max_length=20, num_return_sequences=5) for dic in lst: output.append(dic['generated_text']) return output # tokenizer = GPT2Tokenizer.from_pretrained(model_path) # model = GPT2Model.from_pretrained(model_path) # encoded_input = tokenizer(text, return_tensors='pt') # output = model(**encoded_input) # print(output) # return output examples=[["Hello, I’m a language model."]] with gr.Blocks() as demo: gr.Markdown( """ # Text generation:distilgpt2 Gradio Demo for distilgpt2. To use it, simply type in text, or click one of the examples to load them. """) with gr.Row(): text_input = gr.Textbox() text_output = gr.Textbox() image_button = gr.Button("上传") image_button.click(inference, inputs=text_input, outputs=text_output) gr.Examples(examples,inputs=text_input) demo.launch()