text_generation/distilgpt2/app.py

40 lines
1.1 KiB
Python
Raw Normal View History

2023-03-31 03:06:26 +00:00
import gradio as gr
from transformers import pipeline, set_seed
def inference(text):
model_path = "distilgpt2"
generator = pipeline('text-generation', model=model_path)
set_seed(42)
output=[]
lst=generator(text, max_length=20, num_return_sequences=5)
for dic in lst:
output.append(dic['generated_text'])
return output
# tokenizer = GPT2Tokenizer.from_pretrained(model_path)
# model = GPT2Model.from_pretrained(model_path)
# encoded_input = tokenizer(text, return_tensors='pt')
# output = model(**encoded_input)
# print(output)
# return output
examples=[["Hello, Im a language model."]]
with gr.Blocks() as demo:
gr.Markdown(
"""
# Text generation:distilgpt2
Gradio Demo for distilgpt2. To use it, simply type in text, or click one of the examples to load them.
""")
with gr.Row():
text_input = gr.Textbox()
text_output = gr.Textbox()
image_button = gr.Button("上传")
image_button.click(inference, inputs=text_input, outputs=text_output)
gr.Examples(examples,inputs=text_input)
demo.launch()