object_detection/table_transformer_detection/app.py

46 lines
1.7 KiB
Python
Raw Normal View History

2023-03-30 06:25:09 +00:00
import gradio as gr
from transformers import AutoImageProcessor, TableTransformerForObjectDetection
import torch
from PIL import Image
def inference(img):
pretrained_model_path = "table-transformer-detection"
image = img.convert("RGB")
image_processor = AutoImageProcessor.from_pretrained(pretrained_model_path)
model = TableTransformerForObjectDetection.from_pretrained(pretrained_model_path)
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
0
]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
return (
f"Detected {model.config.id2label[label.item()]} with confidence "
f"{round(score.item(), 3)} at location {box}"
)
title = "object detection:table-transformer-detection"
description = "Gradio Demo for table-transformer-detection. To use it, simply upload your image, or click one of the examples to load them."
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>"
examples=[['example_pdf.png']]
demo = gr.Interface(
fn=inference,
inputs=[gr.inputs.Image(type="pil")],
outputs=gr.outputs.Textbox(),
title=title,
description=description,
article=article,
examples=examples)
demo.launch()