import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig def inference(img): pretrained_model_path = "git-large-coco" processor = AutoProcessor.from_pretrained(pretrained_model_path) model = AutoModelForCausalLM.from_pretrained(pretrained_model_path) pixel_values = processor(images=img, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption title = "Image to text:git-large-coco" article = "

Github Repo Pytorch

visitor badge

" examples=[['example_cat.jpg'],['Masahiro.png']] with gr.Blocks() as demo: gr.Markdown( """ # Image to text:git-large-coco 这是一个git-large-coco的Gradio Demo。 上传你想要的图像或者点击下面的示例来加载它。 """) with gr.Row(): text_input = gr.Image() text_output = gr.Textbox() image_button = gr.Button("上传") image_button.click(inference, inputs=text_input, outputs=text_output) gr.Examples(examples, inputs=text_input) demo.launch(server_name="0.0.0.0")