Add p-tuning v2
This commit is contained in:
parent
220f772e9a
commit
812f43f9ff
|
@ -70,6 +70,8 @@ class ChatGLMConfig(PretrainedConfig):
|
||||||
max_sequence_length=2048,
|
max_sequence_length=2048,
|
||||||
inner_hidden_size=16384,
|
inner_hidden_size=16384,
|
||||||
position_encoding_2d=True,
|
position_encoding_2d=True,
|
||||||
|
pre_seq_len=None,
|
||||||
|
prefix_projection=False,
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
self.num_layers = num_layers
|
self.num_layers = num_layers
|
||||||
|
@ -84,6 +86,8 @@ class ChatGLMConfig(PretrainedConfig):
|
||||||
self.eos_token_id = eos_token_id
|
self.eos_token_id = eos_token_id
|
||||||
self.pad_token_id = pad_token_id
|
self.pad_token_id = pad_token_id
|
||||||
self.position_encoding_2d = position_encoding_2d
|
self.position_encoding_2d = position_encoding_2d
|
||||||
|
self.pre_seq_len = pre_seq_len
|
||||||
|
self.prefix_projection = prefix_projection
|
||||||
super().__init__(
|
super().__init__(
|
||||||
pad_token_id=pad_token_id,
|
pad_token_id=pad_token_id,
|
||||||
bos_token_id=bos_token_id,
|
bos_token_id=bos_token_id,
|
||||||
|
|
|
@ -129,6 +129,35 @@ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class PrefixEncoder(torch.nn.Module):
|
||||||
|
r'''
|
||||||
|
The torch.nn model to encode the prefix
|
||||||
|
Input shape: (batch-size, prefix-length)
|
||||||
|
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
||||||
|
'''
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
self.prefix_projection = config.prefix_projection
|
||||||
|
if self.prefix_projection:
|
||||||
|
# Use a two-layer MLP to encode the prefix
|
||||||
|
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
||||||
|
self.trans = torch.nn.Sequential(
|
||||||
|
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
||||||
|
torch.nn.Tanh(),
|
||||||
|
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
||||||
|
|
||||||
|
def forward(self, prefix: torch.Tensor):
|
||||||
|
if self.prefix_projection:
|
||||||
|
prefix_tokens = self.embedding(prefix)
|
||||||
|
past_key_values = self.trans(prefix_tokens)
|
||||||
|
else:
|
||||||
|
past_key_values = self.embedding(prefix)
|
||||||
|
return past_key_values
|
||||||
|
|
||||||
|
|
||||||
@torch.jit.script
|
@torch.jit.script
|
||||||
def gelu_impl(x):
|
def gelu_impl(x):
|
||||||
"""OpenAI's gelu implementation."""
|
"""OpenAI's gelu implementation."""
|
||||||
|
@ -719,6 +748,8 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||||
self.inner_hidden_size = config.inner_hidden_size
|
self.inner_hidden_size = config.inner_hidden_size
|
||||||
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
||||||
self.position_encoding_2d = config.position_encoding_2d
|
self.position_encoding_2d = config.position_encoding_2d
|
||||||
|
self.pre_seq_len = config.pre_seq_len
|
||||||
|
self.prefix_projection = config.prefix_projection
|
||||||
|
|
||||||
self.word_embeddings = skip_init(
|
self.word_embeddings = skip_init(
|
||||||
torch.nn.Embedding,
|
torch.nn.Embedding,
|
||||||
|
@ -747,12 +778,41 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||||
# Final layer norm before output.
|
# Final layer norm before output.
|
||||||
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
||||||
|
|
||||||
|
if self.pre_seq_len is not None:
|
||||||
|
for param in self.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
||||||
|
self.prefix_encoder = PrefixEncoder(config)
|
||||||
|
self.dropout = torch.nn.Dropout(0.1)
|
||||||
|
|
||||||
|
# total_params = sum(p.numel() for p in self.parameters())
|
||||||
|
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
||||||
|
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
||||||
|
|
||||||
def get_input_embeddings(self):
|
def get_input_embeddings(self):
|
||||||
return self.word_embeddings
|
return self.word_embeddings
|
||||||
|
|
||||||
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
||||||
self.word_embeddings = new_embeddings
|
self.word_embeddings = new_embeddings
|
||||||
|
|
||||||
|
def get_prompt(self, batch_size, device):
|
||||||
|
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
||||||
|
past_key_values = self.prefix_encoder(prefix_tokens).half()
|
||||||
|
past_key_values = past_key_values.view(
|
||||||
|
batch_size,
|
||||||
|
self.pre_seq_len,
|
||||||
|
self.num_layers * 2,
|
||||||
|
self.num_attention_heads,
|
||||||
|
self.hidden_size // self.num_attention_heads
|
||||||
|
)
|
||||||
|
#seq_len, b, nh, hidden_size
|
||||||
|
past_key_values = self.dropout(past_key_values)
|
||||||
|
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
||||||
|
past_key_values = [(v[0], v[1]) for v in past_key_values]
|
||||||
|
# past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(self.num_layers)
|
||||||
|
# past_key_values = [(v1,v2) for v1, v2 in zip(past_key_values[0], past_key_values[1])]
|
||||||
|
return past_key_values
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_masks(seq, device):
|
def get_masks(seq, device):
|
||||||
context_length = seq.index(150004) + 1
|
context_length = seq.index(150004) + 1
|
||||||
|
@ -822,6 +882,9 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||||
|
|
||||||
if past_key_values is None:
|
if past_key_values is None:
|
||||||
|
if self.pre_seq_len is not None:
|
||||||
|
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device)
|
||||||
|
else:
|
||||||
past_key_values = tuple([None] * len(self.layers))
|
past_key_values = tuple([None] * len(self.layers))
|
||||||
|
|
||||||
MASK, gMASK = 150000, 150001
|
MASK, gMASK = 150000, 150001
|
||||||
|
@ -837,6 +900,11 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||||
device=input_ids.device
|
device=input_ids.device
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if self.pre_seq_len is not None:
|
||||||
|
prefix_attention_mask = torch.ones(1, 1, len(seq), self.pre_seq_len).to(attention_mask.device)
|
||||||
|
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
||||||
|
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
||||||
|
|
||||||
if position_ids is None:
|
if position_ids is None:
|
||||||
position_ids = self.get_position_ids(
|
position_ids = self.get_position_ids(
|
||||||
seq=seq,
|
seq=seq,
|
||||||
|
@ -1125,18 +1193,21 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||||
if "eos_token_id" not in kwargs:
|
if "eos_token_id" not in kwargs:
|
||||||
kwargs["eos_token_id"] = eos
|
kwargs["eos_token_id"] = eos
|
||||||
|
|
||||||
|
truncate = kwargs.pop("truncate") if "truncate" in kwargs else False
|
||||||
|
|
||||||
stop = False
|
stop = False
|
||||||
|
|
||||||
return_seqs = []
|
return_seqs = []
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
output_ids = super().generate(**kwargs)
|
output_ids = super().generate(**kwargs)
|
||||||
|
|
||||||
return_seqs = []
|
return_seqs = []
|
||||||
max_length = 0
|
max_length = 0
|
||||||
|
|
||||||
for i in range(output_ids.shape[0]):
|
for i in range(output_ids.shape[0]):
|
||||||
output_seq = output_ids[i].tolist()
|
output_seq = output_ids[i].tolist()
|
||||||
|
if truncate:
|
||||||
|
output_seq = output_seq[len(kwargs["input_ids"][i]) - 2:]
|
||||||
mask_token = MASK if MASK in output_seq else gMASK
|
mask_token = MASK if MASK in output_seq else gMASK
|
||||||
mask_position = output_seq.index(mask_token)
|
mask_position = output_seq.index(mask_token)
|
||||||
bos_position = output_seq.index(bos)
|
bos_position = output_seq.index(bos)
|
||||||
|
|
Loading…
Reference in New Issue