generated from xuyuqing/ailab
27 lines
1.0 KiB
Python
27 lines
1.0 KiB
Python
import torch
|
|
from typing import Dict, List, Any
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
# get dtype
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
|
|
|
|
|
class EndpointHandler:
|
|
def __init__(self, path=""):
|
|
# load the model
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
|
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
|
|
# create inference pipeline
|
|
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
inputs = data.pop("inputs", data)
|
|
parameters = data.pop("parameters", None)
|
|
|
|
# pass inputs with all kwargs in data
|
|
if parameters is not None:
|
|
prediction = self.pipeline(inputs, **parameters)
|
|
else:
|
|
prediction = self.pipeline(inputs)
|
|
# postprocess the prediction
|
|
return prediction |