diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000..73584a7
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1 @@
+pytorch_model*.bin filter=lfs diff=lfs merge=lfs -text
diff --git a/License Agreement for Baichuan-7B Model.pdf b/License Agreement for Baichuan-7B Model.pdf
new file mode 100644
index 0000000..fc7b08d
Binary files /dev/null and b/License Agreement for Baichuan-7B Model.pdf differ
diff --git a/README.md b/README.md
index e69de29..10b18c9 100644
--- a/README.md
+++ b/README.md
@@ -0,0 +1,225 @@
+---
+language:
+- zh
+- en
+pipeline_tag: text-generation
+inference: false
+---
+# baichuan-7B
+
+
+
+baichuan-7B是由百川智能开发的一个开源的大规模预训练模型。基于Transformer结构,在大约1.2万亿tokens上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。在标准的中文和英文权威benchmark(C-EVAL/MMLU)上均取得同尺寸最好的效果。
+
+如果希望使用baichuan-7B(如进行推理、Finetune等),我们推荐使用配套代码库[baichuan-7B](https://github.com/baichuan-inc/baichuan-7B)。
+
+baichuan-7B is an open-source large-scale pre-trained model developed by Baichuan Intelligent Technology. Based on the Transformer architecture, it is a model with 7 billion parameters trained on approximately 1.2 trillion tokens. It supports both Chinese and English, with a context window length of 4096. It achieves the best performance of its size on standard Chinese and English authoritative benchmarks (C-EVAL/MMLU).
+
+If you wish to use baichuan-7B (for inference, finetuning, etc.), we recommend using the accompanying code library [baichuan-7B](https://github.com/baichuan-inc/baichuan-7B).
+
+## Why use baichuan-7B
+
+- 在同尺寸模型中baichuan-7B达到了目前SOTA的水平,参考下面MMLU指标
+- baichuan-7B使用自有的中英文双语语料进行训练,在中文上进行优化,在C-Eval达到SOTA水平
+- 不同于LLaMA完全禁止商业使用,baichuan-7B使用更宽松的开源协议,允许用于商业目的
+
+- Among models of the same size, baichuan-7B has achieved the current state-of-the-art (SOTA) level, as evidenced by the following MMLU metrics.
+- baichuan-7B is trained on proprietary bilingual Chinese-English corpora, optimized for Chinese, and achieves SOTA performance on C-Eval.
+- Unlike LLaMA, which completely prohibits commercial use, baichuan-7B employs a more lenient open-source license, allowing for commercial purposes.
+
+## How to Get Started with the Model
+
+如下是一个使用baichuan-7B进行1-shot推理的任务,根据作品给出作者名,正确输出为"夜雨寄北->李商隐"
+```python
+from transformers import AutoModelForCausalLM, AutoTokenizer
+
+tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/baichuan-7B", trust_remote_code=True)
+model = AutoModelForCausalLM.from_pretrained("baichuan-inc/baichuan-7B", device_map="auto", trust_remote_code=True)
+inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
+inputs = inputs.to('cuda:0')
+pred = model.generate(**inputs, max_new_tokens=64,repetition_penalty=1.1)
+print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
+```
+
+The following is a task of performing 1-shot inference using baichuan-7B, where the author's name is given based on the work, with the correct output being "One Hundred Years of Solitude->Gabriel Garcia Marquez"
+```python
+from transformers import AutoModelForCausalLM, AutoTokenizer
+
+tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/baichuan-7B", trust_remote_code=True)
+model = AutoModelForCausalLM.from_pretrained("baichuan-inc/baichuan-7B", device_map="auto", trust_remote_code=True)
+inputs = tokenizer('Hamlet->Shakespeare\nOne Hundred Years of Solitude->', return_tensors='pt')
+inputs = inputs.to('cuda:0')
+pred = model.generate(**inputs, max_new_tokens=64,repetition_penalty=1.1)
+print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
+```
+
+## Model Details
+
+### Model Description
+
+
+
+- **Developed by:** 百川智能(Baichuan Intelligent Technology)
+- **Email**: opensource@baichuan-inc.com
+- **Language(s) (NLP):** Chinese/English
+- **License:** [baichuan-7B License](https://huggingface.co/baichuan-inc/baichuan-7B/blob/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
+
+### Model Sources
+
+
+
+整体模型基于标准的Transformer结构,我们采用了和LLaMA一样的模型设计
+- **Position Embedding**:采用rotary-embedding,是现阶段被大多数模型采用的位置编码方案,具有很好的外推性。
+- **Feedforward Layer**:采用SwiGLU,Feedforward变化为(8/3)倍的隐含层大小,即11008。
+- **Layer Normalization**: 基于[RMSNorm](https://arxiv.org/abs/1910.07467)的Pre-Normalization。
+
+具体参数和见下表
+| Hyperparameter | Value |
+|----------------|-------|
+|n_parameters | 7000559616 |
+|n_layers | 32 |
+| n_heads | 32 |
+| d_model | 4096 |
+| vocab size | 64000 |
+| sequence length | 4096 |
+
+The overall model is based on the standard Transformer structure, and we have adopted the same model design as LLaMA:
+
+- Position Embedding: We use rotary-embedding, which is the position encoding scheme adopted by most models at this stage, and it has excellent extrapolation capabilities.
+- Feedforward Layer: We use SwiGLU. The feedforward changes to (8/3) times the size of the hidden layer, that is, 11008.
+- Layer Normalization: Pre-Normalization based on [RMSNorm](https://arxiv.org/abs/1910.07467).
+
+The specific parameters are as follows:
+| Hyperparameter | Value |
+|----------------|-------|
+|n_parameters | 7000559616 |
+|n_layers | 32 |
+| n_heads | 32 |
+| d_model | 4096 |
+| vocab size | 64000 |
+| sequence length | 4096 |
+
+## Uses
+
+
+
+### Downstream Use
+
+
+我们同时开源出了和本模型配套的训练代码,允许进行高效的Finetune用于下游任务,具体参见[baichuan-7B](https://github.com/baichuan-inc/baichuan-7B)。
+
+We have also open-sourced the training code that accompanies this model, allowing for efficient finetuning for downstream tasks. For more details, please refer to [baichuan-7B](https://github.com/baichuan-inc/baichuan-7B).
+
+### Out-of-Scope Use
+
+
+在没有充分评估风险和采取缓解措施的情况下投入生产使用;任何可能被视为不负责任或有害的使用案例。
+
+Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
+
+## Bias, Risks, and Limitations
+
+
+
+baichuan-7B可能会产生事实上不正确的输出,不应依赖它产生事实上准确的信息。baichuan-7B是在各种公共数据集上进行训练的。尽管我们已经做出了巨大的努力来清洗预训练数据,但这个模型可能会生成淫秽、偏见或其他冒犯性的输出。
+
+baichuan-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information. baichuan-7B was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
+
+## Training Details
+
+训练具体设置参见[baichuan-7B](https://github.com/baichuan-inc/baichuan-7B)。
+
+For specific training settings, please refer to [baichuan-7B](https://github.com/baichuan-inc/baichuan-7B).
+
+## Evaluation
+
+### 中文评测
+#### C-Eval
+[CEval数据集](https://cevalbenchmark.com/index.html)是一个全面的中文基础模型评测数据集,涵盖了52个学科和四个难度的级别。我们使用该数据集的dev集作为few-shot的来源,在test集上进行了5-shot测试。
+
+
+| Model 5-shot | Average | Avg(Hard) | STEM | Social Sciences | Humanities | Others |
+|-----------------------------|---------|-----------|------|-----------------|------------|--------|
+| GPT-4 | 68.7 | 54.9 | 67.1 | 77.6 | 64.5 | 67.8 |
+| ChatGPT | 54.4 | 41.4 | 52.9 | 61.8 | 50.9 | 53.6 |
+| Claude-v1.3 | 54.2 | 39.0 | 51.9 | 61.7 | 52.1 | 53.7 |
+| Claude-instant-v1.0 | 45.9 | 35.5 | 43.1 | 53.8 | 44.2 | 45.4 |
+| moss-moon-003-base (16B) | 27.4 | 24.5 | 27.0 | 29.1 | 27.2 | 26.9 |
+| Ziya-LLaMA-13B-pretrain | 30.2 | 22.7 | 27.7 | 34.4 | 32.0 | 28.9 |
+| LLaMA-7B-hf | 27.1 | 25.9 | 27.1 | 26.8 | 27.9 | 26.3 |
+| ChatGLM-6B | 34.5 | 23.1 | 30.4 | 39.6 | 37.4 | 34.5 |
+| Falcon-7B | 25.8 | 24.3 | 25.8 | 26.0 | 25.8 | 25.6 |
+| Open-LLaMA-v2-pretrain (7B) | 24.0 | 22.5 | 23.1 | 25.3 | 25.2 | 23.2 |
+| TigerBot-7B-base | 25.7 | 27.0 | 27.3 | 24.7 | 23.4 | 26.1 |
+| Aquila-7B* | 25.5 | 25.2 | 25.6 | 24.6 | 25.2 | 26.6 |
+| BLOOM-7B | 22.8 | 20.2 | 21.8 | 23.3 | 23.9 | 23.3 |
+| BLOOMZ-7B | 35.7 | 25.8 | 31.3 | 43.5 | 36.6 | 35.6 |
+| **baichuan-7B** | 42.8 | 31.5 | 38.2 | 52.0 | 46.2 | 39.3 |
+
+
+#### Gaokao
+[Gaokao](https://github.com/ExpressAI/AI-Gaokao) 是一个以中国高考题作为评测大语言模型能力的数据集,用以评估模型的语言能力和逻辑推理能力。
+我们只保留了其中的单项选择题,并对所有模型进行统一5-shot测试。
+
+以下是测试的结果。
+
+| Model | Average |
+|-------------------------|-----------------|
+| Open-LLaMA-v2-pretrain | 21.41 |
+| Ziya-LLaMA-13B-pretrain | 23.17 |
+| Falcon-7B | 23.98 |
+| TigerBot-7B-base | 25.94 |
+| LLaMA-7B | 27.81 |
+| ChatGLM-6B | 21.41 |
+| BLOOM-7B | 26.96 |
+| BLOOMZ-7B | 28.72 |
+| Aquila-7B* | 24.39 |
+| **baichuan-7B** | **36.24** |
+
+
+#### AGIEval
+[AGIEval](https://github.com/microsoft/AGIEval) 旨在评估模型的认知和解决问题相关的任务中的一般能力。
+我们只保留了其中的四选一单项选择题,随机划分后对所有模型进行了统一5-shot测试。
+
+| Model | Average |
+|-------------------------|-----------------|
+| Open-LLaMA-v2-pretrain | 23.49 |
+| Ziya-LLaMA-13B-pretrain | 27.64 |
+| Falcon-7B | 27.18 |
+| TigerBot-7B-base | 25.19 |
+| LLaMA-7B | 28.17 |
+| ChatGLM-6B | 23.49 |
+| BLOOM-7B | 26.55 |
+| BLOOMZ-7B | 30.27 |
+| Aquila-7B* | 25.58 |
+| **baichuan-7B** | **34.44** |
+
+*其中Aquila模型来源于[智源官方网站](https://model.baai.ac.cn/model-detail/100098),仅做参考
+
+### English Leaderboard
+In addition to Chinese, we also tested the model's performance in English.
+
+#### MMLU
+
+[MMLU](https://arxiv.org/abs/2009.03300) is an English evaluation dataset that includes 57 multiple-choice tasks, covering elementary mathematics, American history, computer science, law, etc. The difficulty ranges from high school level to expert level, making it a mainstream LLM evaluation dataset.
+
+We adopted the [open-source]((https://github.com/hendrycks/test)) evaluation scheme, and the final 5-shot results are as follows:
+
+| Model | Humanities | Social Sciences | STEM | Other | Average |
+|----------------------------------------|-----------:|:---------------:|:----:|:-----:|:-------:|
+| LLaMA-7B2 | 34.0 | 38.3 | 30.5 | 38.1 | 35.1 |
+| Falcon-7B1 | - | - | - | - | 35.0 |
+| mpt-7B1 | - | - | - | - | 35.6 |
+| ChatGLM-6B0 | 35.4 | 41.0 | 31.3 | 40.5 | 36.9 |
+| BLOOM 7B0 | 25.0 | 24.4 | 26.5 | 26.4 | 25.5 |
+| BLOOMZ 7B0 | 31.3 | 42.1 | 34.4 | 39.0 | 36.1 |
+| moss-moon-003-base (16B)0 | 24.2 | 22.8 | 22.4 | 24.4 | 23.6 |
+| moss-moon-003-sft (16B)0 | 30.5 | 33.8 | 29.3 | 34.4 | 31.9 |
+| **baichuan-7B0** | 38.4 | 48.9 | 35.6 | 48.1 | 42.3 |
+
+The superscript in the Model column indicates the source of the results.
+```
+0:reimplemented
+1:https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
+2:https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
+```
diff --git a/baichuan-7B 模型许可协议.pdf b/baichuan-7B 模型许可协议.pdf
new file mode 100644
index 0000000..cdc226a
Binary files /dev/null and b/baichuan-7B 模型许可协议.pdf differ
diff --git a/config.json b/config.json
new file mode 100644
index 0000000..6bdb34a
--- /dev/null
+++ b/config.json
@@ -0,0 +1,26 @@
+{
+ "architectures": [
+ "BaiChuanForCausalLM"
+ ],
+ "auto_map": {
+ "AutoConfig": "configuration_baichuan.BaiChuanConfig",
+ "AutoModelForCausalLM": "modeling_baichuan.BaiChuanForCausalLM"
+ },
+ "bos_token_id": 1,
+ "eos_token_id": 2,
+ "hidden_act": "silu",
+ "hidden_size": 4096,
+ "initializer_range": 0.02,
+ "intermediate_size": 11008,
+ "max_position_embeddings": 4096,
+ "model_type": "baichuan",
+ "num_attention_heads": 32,
+ "num_hidden_layers": 32,
+ "pad_token_id": 0,
+ "rms_norm_eps": 1e-06,
+ "tie_word_embeddings": false,
+ "torch_dtype": "float32",
+ "transformers_version": "4.29.1",
+ "use_cache": true,
+ "vocab_size": 64000
+}
diff --git a/configuration_baichuan.py b/configuration_baichuan.py
new file mode 100644
index 0000000..5057100
--- /dev/null
+++ b/configuration_baichuan.py
@@ -0,0 +1,66 @@
+# coding=utf-8
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
+# and OPT implementations in this library. It has been modified from its
+# original forms to accommodate minor architectural differences compared
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from transformers.configuration_utils import PretrainedConfig
+from transformers.utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class BaiChuanConfig(PretrainedConfig):
+ model_type = "baichuan"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=64000,
+ hidden_size=4096,
+ intermediate_size=11008,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ hidden_act="silu",
+ max_position_embeddings=4096,
+ initializer_range=0.02,
+ rms_norm_eps=1e-6,
+ use_cache=True,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ tie_word_embeddings=False,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
diff --git a/generation_config.json b/generation_config.json
new file mode 100644
index 0000000..684bc56
--- /dev/null
+++ b/generation_config.json
@@ -0,0 +1,7 @@
+{
+ "_from_model_config": true,
+ "bos_token_id": 1,
+ "eos_token_id": 2,
+ "pad_token_id": 0,
+ "transformers_version": "4.29.1"
+}
diff --git a/handler.py b/handler.py
new file mode 100644
index 0000000..306fecc
--- /dev/null
+++ b/handler.py
@@ -0,0 +1,27 @@
+import torch
+from typing import Dict, List, Any
+from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
+
+# get dtype
+dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
+
+
+class EndpointHandler:
+ def __init__(self, path=""):
+ # load the model
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
+ model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
+ # create inference pipeline
+ self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
+
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
+ inputs = data.pop("inputs", data)
+ parameters = data.pop("parameters", None)
+
+ # pass inputs with all kwargs in data
+ if parameters is not None:
+ prediction = self.pipeline(inputs, **parameters)
+ else:
+ prediction = self.pipeline(inputs)
+ # postprocess the prediction
+ return prediction
\ No newline at end of file
diff --git a/modeling_baichuan.py b/modeling_baichuan.py
new file mode 100644
index 0000000..3c54c2b
--- /dev/null
+++ b/modeling_baichuan.py
@@ -0,0 +1,671 @@
+# coding=utf-8
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
+# and OPT implementations in this library. It has been modified from its
+# original forms to accommodate minor architectural differences compared
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from .configuration_baichuan import BaiChuanConfig
+from transformers import PreTrainedModel, add_start_docstrings
+from transformers.activations import ACT2FN
+from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
+ SequenceClassifierOutputWithPast
+from transformers.utils import logging, add_start_docstrings_to_model_forward, replace_return_docstrings
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+
+logger = logging.get_logger(__name__)
+
+# Copied from transformers.models.bart.modeling_bart._make_causal_mask
+def _make_causal_mask(
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
+):
+ """
+ Make causal mask used for bi-directional self-attention.
+ """
+ bsz, tgt_len = input_ids_shape
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
+ mask_cond = torch.arange(mask.size(-1), device=device)
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
+ mask = mask.to(dtype)
+
+ if past_key_values_length > 0:
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
+
+
+# Copied from transformers.models.bart.modeling_bart._expand_mask
+def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ bsz, src_len = mask.size()
+ tgt_len = tgt_len if tgt_len is not None else src_len
+
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
+
+ inverted_mask = 1.0 - expanded_mask
+
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
+
+
+class RMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ RMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+
+ # convert into half-precision if necessary
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
+ hidden_states = hidden_states.to(self.weight.dtype)
+
+ return self.weight * hidden_states
+
+
+class RotaryEmbedding(torch.nn.Module):
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
+ super().__init__()
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
+ self.register_buffer("inv_freq", inv_freq)
+
+ # Build here to make `torch.jit.trace` work.
+ self.max_seq_len_cached = max_position_embeddings
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1)
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
+
+ def forward(self, x, seq_len=None):
+ # x: [bs, num_attention_heads, seq_len, head_size]
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
+ if seq_len > self.max_seq_len_cached:
+ self.max_seq_len_cached = seq_len
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
+ return (
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
+ )
+
+
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., : x.shape[-1] // 2]
+ x2 = x[..., x.shape[-1] // 2:]
+ return torch.cat((-x2, x1), dim=-1)
+
+
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
+ q_embed = (q * cos) + (rotate_half(q) * sin)
+ k_embed = (k * cos) + (rotate_half(k) * sin)
+ return q_embed, k_embed
+
+
+class MLP(nn.Module):
+ def __init__(
+ self,
+ hidden_size: int,
+ intermediate_size: int,
+ hidden_act: str,
+ ):
+ super().__init__()
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
+ self.act_fn = ACT2FN[hidden_act]
+
+ def forward(self, x):
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+
+
+class Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: BaiChuanConfig):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.hidden_size // self.num_heads
+ self.max_position_embeddings = config.max_position_embeddings
+
+ if (self.head_dim * self.num_heads) != self.hidden_size:
+ raise ValueError(
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+ self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
+ self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ bsz, q_len, _ = hidden_states.size()
+
+ proj = self.W_pack(hidden_states)
+ proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
+ query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1,
+ 2) # batch_size x source_len x hidden_size
+ key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1,
+ 2) # batch_size x target_len x head_size
+ value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1,
+ 2) # batch_size x source_len x hidden_size
+
+ kv_seq_len = key_states.shape[-2]
+ if past_key_value is not None:
+ kv_seq_len += past_key_value[0].shape[-2]
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
+ # [bsz, nh, t, hd]
+
+ if past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+
+ past_key_value = (key_states, value_states) if use_cache else None
+
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights + attention_mask
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
+
+ # upcast attention to fp32
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2)
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
+
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+
+class DecoderLayer(nn.Module):
+ def __init__(self, config: BaiChuanConfig):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+ self.self_attn = Attention(config=config)
+ self.mlp = MLP(
+ hidden_size=self.hidden_size,
+ intermediate_size=config.intermediate_size,
+ hidden_act=config.hidden_act,
+ )
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ """
+
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+class PreTrainedModel(PreTrainedModel):
+ config_class = BaiChuanConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["DecoderLayer"]
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if isinstance(module, Model):
+ module.gradient_checkpointing = value
+
+
+class Model(PreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`]
+
+ Args:
+ config: BaiChuanConfig
+ """
+
+ def __init__(self, config: BaiChuanConfig):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
+ # create causal mask
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ combined_attention_mask = None
+ if input_shape[-1] > 1:
+ combined_attention_mask = _make_causal_mask(
+ input_shape,
+ inputs_embeds.dtype,
+ device=inputs_embeds.device,
+ past_key_values_length=past_key_values_length,
+ )
+
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
+ inputs_embeds.device
+ )
+ combined_attention_mask = (
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
+ )
+
+ return combined_attention_mask
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ batch_size, seq_length = input_ids.shape
+ elif inputs_embeds is not None:
+ batch_size, seq_length, _ = inputs_embeds.shape
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ seq_length_with_past = seq_length
+ past_key_values_length = 0
+
+ if past_key_values is not None:
+ past_key_values_length = past_key_values[0][0].shape[2]
+ seq_length_with_past = seq_length_with_past + past_key_values_length
+
+ if position_ids is None:
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ position_ids = torch.arange(
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
+ else:
+ position_ids = position_ids.view(-1, seq_length).long()
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+ # embed positions
+ if attention_mask is None:
+ attention_mask = torch.ones(
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
+ )
+ attention_mask = self._prepare_decoder_attention_mask(
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
+ )
+
+ hidden_states = inputs_embeds
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ next_decoder_cache = () if use_cache else None
+
+ for idx, decoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ # None for past_key_value
+ return module(*inputs, output_attentions, None)
+
+ return custom_forward
+
+ layer_outputs = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(decoder_layer),
+ hidden_states,
+ attention_mask,
+ position_ids,
+ None,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ hidden_states = self.norm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
+ return BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ )
+
+
+class BaiChuanForCausalLM(PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = Model(config)
+
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, ModelForCausalLM
+
+ >>> model = ModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
+
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ logits = self.lm_head(hidden_states)
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
+ ):
+ if past_key_values:
+ input_ids = input_ids[:, -1:]
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if past_key_values:
+ position_ids = position_ids[:, -1].unsqueeze(-1)
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
+ return reordered_past
diff --git a/pytorch_model.bin b/pytorch_model.bin
new file mode 100644
index 0000000..f7ceabe
--- /dev/null
+++ b/pytorch_model.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2538ab1d84c573fe65dc2b6418e6ec24d284ee1f6c10cd58295a5bf9bd66456d
+size 14001182896
diff --git a/special_tokens_map.json b/special_tokens_map.json
new file mode 100644
index 0000000..d85ba6c
--- /dev/null
+++ b/special_tokens_map.json
@@ -0,0 +1,23 @@
+{
+ "bos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "eos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "unk_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ }
+}
diff --git a/tokenization_baichuan.py b/tokenization_baichuan.py
new file mode 100644
index 0000000..6e8dcef
--- /dev/null
+++ b/tokenization_baichuan.py
@@ -0,0 +1,250 @@
+# coding=utf-8
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
+# and OPT implementations in this library. It has been modified from its
+# original forms to accommodate minor architectural differences compared
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
+from transformers.utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {},
+ "tokenizer_file": {},
+}
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
+
+
+class BaiChuanTokenizer(PreTrainedTokenizer):
+ """
+ Construct a BaiChuan tokenizer. Based on byte-level Byte-Pair-Encoding.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token=None,
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ add_bos_token=True,
+ add_eos_token=False,
+ clean_up_tokenization_spaces=False,
+ **kwargs,
+ ):
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ add_bos_token=add_bos_token,
+ add_eos_token=add_eos_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ **kwargs,
+ )
+ self.vocab_file = vocab_file
+ self.add_bos_token = add_bos_token
+ self.add_eos_token = add_eos_token
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ @property
+ def vocab_size(self):
+ """Returns vocab size"""
+ return self.sp_model.get_piece_size()
+
+ def get_vocab(self):
+ """Returns vocab as a dict"""
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def _tokenize(self, text):
+ """Returns a tokenized string."""
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.piece_to_id(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ token = self.sp_model.IdToPiece(index)
+ return token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for i, token in enumerate(tokens):
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special and i != 0:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string
+
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ """
+ Save the vocabulary and special tokens file to a directory.
+
+ Args:
+ save_directory (`str`):
+ The directory in which to save the vocabulary.
+
+ Returns:
+ `Tuple(str)`: Paths to the files saved.
+ """
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = bos_token_id + token_ids_0 + eos_token_id
+
+ if token_ids_1 is not None:
+ output = output + bos_token_id + token_ids_1 + eos_token_id
+
+ return output
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ bos_token_id = [1] if self.add_bos_token else []
+ eos_token_id = [1] if self.add_eos_token else []
+
+ if token_ids_1 is None:
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
+ return (
+ bos_token_id
+ + ([0] * len(token_ids_0))
+ + eos_token_id
+ + bos_token_id
+ + ([0] * len(token_ids_1))
+ + eos_token_id
+ )
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
+
+ if token_ids_1 is not None:
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
+
+ return output
\ No newline at end of file
diff --git a/tokenizer.model b/tokenizer.model
new file mode 100644
index 0000000..7980f6b
Binary files /dev/null and b/tokenizer.model differ
diff --git a/tokenizer_config.json b/tokenizer_config.json
new file mode 100644
index 0000000..c41c765
--- /dev/null
+++ b/tokenizer_config.json
@@ -0,0 +1,35 @@
+{
+ "auto_map": {
+ "AutoTokenizer": ["tokenization_baichuan.BaiChuanTokenizer", null]
+ },
+ "add_bos_token": false,
+ "add_eos_token": false,
+ "bos_token": {
+ "__type": "AddedToken",
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "clean_up_tokenization_spaces": false,
+ "eos_token": {
+ "__type": "AddedToken",
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "model_max_length": 1000000000000000019884624838656,
+ "sp_model_kwargs": {},
+ "tokenizer_class": "BaiChuanTokenizer",
+ "unk_token": {
+ "__type": "AddedToken",
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ }
+}