Update README.md

This commit is contained in:
Niels Rogge 2022-12-16 20:18:15 +00:00 committed by huggingface-web
parent 97f8f6740c
commit a30ee67eda
1 changed files with 7 additions and 8 deletions

View File

@ -37,7 +37,7 @@ You can use the raw model for object detection. See the [model hub](https://hugg
Here is how to use this model:
```python
from transformers import AutoFeatureExtractor, DeformableDetrForObjectDetection
from transformers import AutoImageProcessor, DeformableDetrForObjectDetection
import torch
from PIL import Image
import requests
@ -45,24 +45,23 @@ import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = AutoFeatureExtractor.from_pretrained("SenseTime/deformable-detr")
processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr")
model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr")
inputs = feature_extractor(images=image, return_tensors="pt")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.7
target_sizes = torch.tensor([image.size[::-1]])
results = feature_extractor.post_process(outputs, target_sizes=target_sizes)[0]
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
# let's only keep detections with score > 0.7
if score > 0.7:
print(
print(
f"Detected {model.config.id2label[label.item()]} with confidence "
f"{round(score.item(), 3)} at location {box}"
)
)
```
This should output:
```