Compare commits

..

10 Commits

Author SHA1 Message Date
JunnanLi 56e1fe81e7 Update README.md 2023-03-20 02:46:40 +00:00
Niels Rogge ca9e6c21b0 Update README.md 2023-02-27 14:57:25 +00:00
Niels Rogge c3a5f8c228 Update README.md 2023-02-27 14:56:54 +00:00
Niels Rogge a712fe613a Update README.md 2023-02-10 08:35:25 +00:00
Niels Rogge 2fc6e3f072 Update README.md 2023-02-10 08:33:51 +00:00
Niels Rogge 45658161ca Upload Blip2ForConditionalGeneration 2023-02-08 19:56:40 +00:00
Niels Rogge 34f5d870f9 Upload processor 2023-02-08 19:51:22 +00:00
Niels Rogge 21bcce5c73 Create README.md 2023-02-07 15:59:18 +00:00
Niels Rogge ee95c28e13 Upload Blip2ForConditionalGeneration 2023-02-06 16:27:12 +00:00
Niels Rogge 69cfab42c6 Upload processor 2023-02-06 16:21:51 +00:00
11 changed files with 152139 additions and 0 deletions

163
README.md Normal file
View File

@ -0,0 +1,163 @@
---
language: en
license: mit
tags:
- vision
- image-to-text
- image-captioning
- visual-question-answering
pipeline_tag: image-to-text
---
# BLIP-2, OPT-2.7b, pre-trained only
BLIP-2 model, leveraging [OPT-2.7b](https://huggingface.co/facebook/opt-2.7b) (a large language model with 2.7 billion parameters).
It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2).
Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model.
The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen
while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings,
which bridge the gap between the embedding space of the image encoder and the large language model.
The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg"
alt="drawing" width="600"/>
This allows the model to be used for tasks like:
- image captioning
- visual question answering (VQA)
- chat-like conversations by feeding the image and the previous conversation as prompt to the model
## Direct Use and Downstream Use
You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for
fine-tuned versions on a task that interests you.
## Bias, Risks, Limitations, and Ethical Considerations
BLIP2-OPT uses off-the-shelf OPT as the language model. It inherits the same risks and limitations as mentioned in Meta's model card.
> Like other large language models for which the diversity (or lack thereof) of training
> data induces downstream impact on the quality of our model, OPT-175B has limitations in terms
> of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and
> hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern
> large language models.
>
BLIP2 is fine-tuned on image-text datasets (e.g. [LAION](https://laion.ai/blog/laion-400-open-dataset/) ) collected from the internet. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
BLIP2 has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context theyre being deployed within.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example).
#### Running the model on CPU
<details>
<summary> Click to expand </summary>
```python
import requests
from PIL import Image
from transformers import BlipProcessor, Blip2ForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
#### Running the model on GPU
##### In full precision
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
##### In half precision (`float16`)
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
##### In 8-bit precision (`int8`)
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate bitsandbytes
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map="auto")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>

255
config.json Normal file
View File

@ -0,0 +1,255 @@
{
"_commit_hash": null,
"architectures": [
"Blip2ForConditionalGeneration"
],
"initializer_factor": 1.0,
"initializer_range": 0.02,
"model_type": "blip-2",
"num_query_tokens": 32,
"qformer_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_probs_dropout_prob": 0.1,
"bad_words_ids": null,
"begin_suppress_tokens": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"classifier_dropout": null,
"cross_attention_frequency": 2,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"early_stopping": false,
"encoder_hidden_size": 1408,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": null,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-12,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 512,
"min_length": 0,
"model_type": "blip_2_qformer",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"prefix": null,
"problem_type": null,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"suppress_tokens": null,
"task_specific_params": null,
"temperature": 1.0,
"tf_legacy_loss": false,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.27.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false,
"vocab_size": 30522
},
"text_config": {
"_name_or_path": "facebook/opt-2.7b",
"_remove_final_layer_norm": false,
"activation_dropout": 0.0,
"activation_function": "relu",
"add_cross_attention": false,
"architectures": [
"OPTForCausalLM"
],
"attention_dropout": 0.0,
"bad_words_ids": null,
"begin_suppress_tokens": null,
"bos_token_id": 2,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_layer_norm_before": true,
"do_sample": false,
"dropout": 0.1,
"early_stopping": false,
"enable_bias": true,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 50118,
"exponential_decay_length_penalty": null,
"ffn_dim": 10240,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_size": 2560,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"init_std": 0.02,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_elementwise_affine": true,
"layerdrop": 0.0,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 2048,
"min_length": 0,
"model_type": "opt",
"no_repeat_ngram_size": 0,
"num_attention_heads": 32,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 32,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 1,
"prefix": "</s>",
"problem_type": null,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"suppress_tokens": null,
"task_specific_params": null,
"temperature": 1.0,
"tf_legacy_loss": false,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": "float16",
"torchscript": false,
"transformers_version": "4.27.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false,
"use_cache": true,
"vocab_size": 50272,
"word_embed_proj_dim": 2560
},
"torch_dtype": "float32",
"transformers_version": null,
"use_decoder_only_language_model": true,
"vision_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"begin_suppress_tokens": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": null,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "gelu",
"hidden_size": 1408,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 1e-10,
"intermediate_size": 6144,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"min_length": 0,
"model_type": "blip_2_vision_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 16,
"num_beam_groups": 1,
"num_beams": 1,
"num_channels": 3,
"num_hidden_layers": 39,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": null,
"patch_size": 14,
"prefix": null,
"problem_type": null,
"projection_dim": 512,
"pruned_heads": {},
"qkv_bias": true,
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"suppress_tokens": null,
"task_specific_params": null,
"temperature": 1.0,
"tf_legacy_loss": false,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.27.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false
}
}

50001
merges.txt Normal file

File diff suppressed because it is too large Load Diff

24
preprocessor_config.json Normal file
View File

@ -0,0 +1,24 @@
{
"do_convert_rgb": true,
"do_normalize": true,
"do_rescale": true,
"do_resize": true,
"image_mean": [
0.48145466,
0.4578275,
0.40821073
],
"image_processor_type": "BlipImageProcessor",
"image_std": [
0.26862954,
0.26130258,
0.27577711
],
"processor_class": "Blip2Processor",
"resample": 3,
"rescale_factor": 0.00392156862745098,
"size": {
"height": 224,
"width": 224
}
}

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:83f4604e9f2c81dace48cbbb245cbe9acadddce7471c17eedc10cd675bf9af62
size 9996239804

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:b224ac0c148bf3aa0a211e5d043d38918ef57c2d3b714771a7c4b124129dbd48
size 5497724774

1255
pytorch_model.bin.index.json Normal file

File diff suppressed because it is too large Load Diff

30
special_tokens_map.json Normal file
View File

@ -0,0 +1,30 @@
{
"bos_token": {
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<pad>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
}
}

100363
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

41
tokenizer_config.json Normal file
View File

@ -0,0 +1,41 @@
{
"add_bos_token": true,
"add_prefix_space": false,
"bos_token": {
"__type": "AddedToken",
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"eos_token": {
"__type": "AddedToken",
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"errors": "replace",
"model_max_length": 1000000000000000019884624838656,
"pad_token": {
"__type": "AddedToken",
"content": "<pad>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"processor_class": "Blip2Processor",
"special_tokens_map_file": null,
"tokenizer_class": "GPT2Tokenizer",
"unk_token": {
"__type": "AddedToken",
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
}
}

1
vocab.json Normal file

File diff suppressed because one or more lines are too long