diff --git a/README.md b/README.md
index 6cbcfd5..4a180ff 100644
--- a/README.md
+++ b/README.md
@@ -43,4 +43,107 @@ fine-tuned versions on a task that interests you.
### How to use
-For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example).
\ No newline at end of file
+For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example), or refer to the snippets below depending on your usecase:
+
+#### Running the model on CPU
+
+
+ Click to expand
+
+```python
+import requests
+from PIL import Image
+from transformers import BlipProcessor, Blip2ForConditionalGeneration
+
+processor = BlipProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
+model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl")
+
+img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
+raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
+
+question = "how many dogs are in the picture?"
+inputs = processor(raw_image, question, return_tensors="pt")
+
+out = model.generate(**inputs)
+print(processor.decode(out[0], skip_special_tokens=True))
+```
+
+
+#### Running the model on GPU
+
+##### In full precision
+
+
+ Click to expand
+
+```python
+# pip install accelerate
+import requests
+from PIL import Image
+from transformers import Blip2Processor, Blip2ForConditionalGeneration
+
+processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
+model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", device_map="auto")
+
+img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
+raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
+
+question = "how many dogs are in the picture?"
+inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
+
+out = model.generate(**inputs)
+print(processor.decode(out[0], skip_special_tokens=True))
+```
+
+
+##### In half precision (`float16`)
+
+
+ Click to expand
+
+```python
+# pip install accelerate
+import torch
+import requests
+from PIL import Image
+from transformers import Blip2Processor, Blip2ForConditionalGeneration
+
+processor = Bli2pProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
+model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", torch_dtype=torch.float16, device_map="auto")
+
+img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
+raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
+
+question = "how many dogs are in the picture?"
+inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
+
+out = model.generate(**inputs)
+print(processor.decode(out[0], skip_special_tokens=True))
+```
+
+
+##### In 8-bit precision (`int8`)
+
+
+ Click to expand
+
+```python
+# pip install accelerate bitsandbytes
+import torch
+import requests
+from PIL import Image
+from transformers import Blip2Processor, Blip2ForConditionalGeneration
+
+processor = Bli2pProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
+model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", load_in_8bit=True, device_map="auto")
+
+img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
+raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
+
+question = "how many dogs are in the picture?"
+inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
+
+out = model.generate(**inputs)
+print(processor.decode(out[0], skip_special_tokens=True))
+```
+
\ No newline at end of file