Update README.md
This commit is contained in:
parent
79374a5b9a
commit
d13f327dc4
62
README.md
62
README.md
|
@ -5,3 +5,65 @@ widget:
|
|||
- text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
|
||||
|
||||
---
|
||||
|
||||
|
||||
# CodeTrans model for code documentation generation python
|
||||
Pretrained model on programming language python using the t5 base model architecture. It was first released in
|
||||
[this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions.
|
||||
|
||||
|
||||
## Model description
|
||||
|
||||
This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus python dataset.
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better.
|
||||
|
||||
### How to use
|
||||
|
||||
Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline:
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
|
||||
|
||||
pipeline = SummarizationPipeline(
|
||||
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python"),
|
||||
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python", skip_special_tokens=True),
|
||||
device=0
|
||||
)
|
||||
|
||||
tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
|
||||
pipeline([tokenized_code])
|
||||
```
|
||||
Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/python/base_model.ipynb).
|
||||
## Training data
|
||||
|
||||
The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
|
||||
|
||||
|
||||
## Evaluation results
|
||||
|
||||
For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
|
||||
|
||||
Test results :
|
||||
|
||||
| Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
|
||||
| -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: |
|
||||
| CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
|
||||
| CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
|
||||
| CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
|
||||
| CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 |
|
||||
| CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** |
|
||||
| CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
|
||||
| CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 |
|
||||
| CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 |
|
||||
| CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
|
||||
| CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 |
|
||||
| CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 |
|
||||
| State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
|
||||
|
||||
|
||||
> Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue