add training script
This commit is contained in:
parent
b37798c477
commit
435eb54671
|
@ -0,0 +1,247 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# coding: utf-8
|
||||||
|
|
||||||
|
# # Creating a Zero-Shot classifier based on BETO
|
||||||
|
#
|
||||||
|
# This notebook/script fine-tunes a BETO (spanish bert, 'dccuchile/bert-base-spanish-wwm-cased') model on the spanish XNLI dataset.
|
||||||
|
# The fine-tuned model can then be fed to a Huggingface ZeroShot pipeline to obtain a ZeroShot classifier.
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
from datasets import load_dataset, Dataset, load_metric, load_from_disk
|
||||||
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||||
|
from transformers import Trainer, TrainingArguments
|
||||||
|
import torch
|
||||||
|
from pathlib import Path
|
||||||
|
# from ray import tune
|
||||||
|
# from ray.tune.suggest.hyperopt import HyperOptSearch
|
||||||
|
# from ray.tune.schedulers import ASHAScheduler
|
||||||
|
|
||||||
|
|
||||||
|
# # Prepare the datasets
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
xnli_es = load_dataset("xnli", "es")
|
||||||
|
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
xnli_es
|
||||||
|
|
||||||
|
|
||||||
|
# >joeddav
|
||||||
|
# >Aug '20
|
||||||
|
# >
|
||||||
|
# >@rsk97 In addition, just make sure the model used is trained on an NLI task and that the **last output label corresponds to entailment** while the **first output label corresponds to contradiction**.
|
||||||
|
#
|
||||||
|
# => We change the original `label` and use the `labels` column, which is required by a `AutoModelForSequenceClassification`
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
# see markdown above
|
||||||
|
def switch_label_id(row):
|
||||||
|
if row["label"] == 0:
|
||||||
|
return {"labels": 2}
|
||||||
|
elif row["label"] == 2:
|
||||||
|
return {"labels": 0}
|
||||||
|
else:
|
||||||
|
return {"labels": 1}
|
||||||
|
|
||||||
|
for split in xnli_es:
|
||||||
|
xnli_es[split] = xnli_es[split].map(switch_label_id)
|
||||||
|
|
||||||
|
|
||||||
|
# ## Tokenize data
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
|
||||||
|
|
||||||
|
|
||||||
|
# In a first attempt i padded all data to the maximum length of the dataset (379). However, the traninig takes substanially longer with all the paddings, it's better to pass in the tokenizer to the `Trainer` and let the `Trainer` do the padding on a batch level.
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
# Figured out max length of the dataset manually
|
||||||
|
# max_length = 379
|
||||||
|
def tokenize(row):
|
||||||
|
return tokenizer(row["premise"], row["hypothesis"], truncation=True, max_length=512) #, padding="max_length", max_length=max_length)
|
||||||
|
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
data = {}
|
||||||
|
for split in xnli_es:
|
||||||
|
data[split] = xnli_es[split].map(
|
||||||
|
tokenize,
|
||||||
|
remove_columns=["hypothesis", "premise", "label"],
|
||||||
|
batched=True,
|
||||||
|
batch_size=128
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
train_path = str(Path("./train_ds").absolute())
|
||||||
|
valid_path = str(Path("./valid_ds").absolute())
|
||||||
|
|
||||||
|
data["train"].save_to_disk(train_path)
|
||||||
|
data["validation"].save_to_disk(valid_path)
|
||||||
|
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
# We can use `datasets.Dataset`s directly
|
||||||
|
|
||||||
|
# class XnliDataset(torch.utils.data.Dataset):
|
||||||
|
# def __init__(self, data):
|
||||||
|
# self.data = data
|
||||||
|
|
||||||
|
# def __getitem__(self, idx):
|
||||||
|
# item = {key: torch.tensor(val) for key, val in self.data[idx].items()}
|
||||||
|
# return item
|
||||||
|
|
||||||
|
# def __len__(self):
|
||||||
|
# return len(self.data)
|
||||||
|
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
def trainable(config):
|
||||||
|
metric = load_metric("xnli", "es")
|
||||||
|
|
||||||
|
def compute_metrics(eval_pred):
|
||||||
|
predictions, labels = eval_pred
|
||||||
|
predictions = predictions.argmax(axis=-1)
|
||||||
|
return metric.compute(predictions=predictions, references=labels)
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
|
||||||
|
|
||||||
|
training_args = TrainingArguments(
|
||||||
|
output_dir='./results', # output directory
|
||||||
|
do_train=True,
|
||||||
|
do_eval=True,
|
||||||
|
evaluation_strategy="steps",
|
||||||
|
eval_steps=500,
|
||||||
|
load_best_model_at_end=True,
|
||||||
|
metric_for_best_model="eval_accuracy",
|
||||||
|
num_train_epochs=config["epochs"], # total number of training epochs
|
||||||
|
per_device_train_batch_size=config["batch_size"], # batch size per device during training
|
||||||
|
per_device_eval_batch_size=config["batch_size_eval"], # batch size for evaluation
|
||||||
|
warmup_steps=config["warmup_steps"], # 500
|
||||||
|
weight_decay=config["weight_decay"], # 0.001 # strength of weight decay
|
||||||
|
learning_rate=config["learning_rate"], # 5e-05
|
||||||
|
logging_dir='./logs', # directory for storing logs
|
||||||
|
logging_steps=250,
|
||||||
|
#save_steps=500, # ignored when using load_best_model_at_end
|
||||||
|
save_total_limit=10,
|
||||||
|
no_cuda=False,
|
||||||
|
disable_tqdm=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# train_dataset = XnliDataset(load_from_disk(config["train_path"]))
|
||||||
|
# valid_dataset = XnliDataset(load_from_disk(config["valid_path"]))
|
||||||
|
train_dataset = load_from_disk(config["train_path"])
|
||||||
|
valid_dataset = load_from_disk(config["valid_path"])
|
||||||
|
|
||||||
|
|
||||||
|
trainer = Trainer(
|
||||||
|
model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
args=training_args, # training arguments, defined above
|
||||||
|
train_dataset=train_dataset, # training dataset
|
||||||
|
eval_dataset=valid_dataset, # evaluation dataset
|
||||||
|
compute_metrics=compute_metrics,
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
trainable(
|
||||||
|
{
|
||||||
|
"train_path": train_path,
|
||||||
|
"valid_path": valid_path,
|
||||||
|
"batch_size": 16,
|
||||||
|
"batch_size_eval": 64,
|
||||||
|
"warmup_steps": 500,
|
||||||
|
"weight_decay": 0.001,
|
||||||
|
"learning_rate": 5e-5,
|
||||||
|
"epochs": 3,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# # HPO
|
||||||
|
|
||||||
|
# In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
# config = {
|
||||||
|
# "train_path": train_path,
|
||||||
|
# "valid_path": valid_path,
|
||||||
|
# "warmup_steps": tune.randint(0, 500),
|
||||||
|
# "weight_decay": tune.loguniform(0.00001, 0.1),
|
||||||
|
# "learning_rate": tune.loguniform(5e-6, 5e-4),
|
||||||
|
# "epochs": tune.choice([2, 3, 4])
|
||||||
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
# # In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
# analysis = tune.run(
|
||||||
|
# trainable,
|
||||||
|
# config=config,
|
||||||
|
# metric="eval_acc",
|
||||||
|
# mode="max",
|
||||||
|
# #search_alg=HyperOptSearch(),
|
||||||
|
# #scheduler=ASHAScheduler(),
|
||||||
|
# num_samples=1,
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
# # In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
# def model_init():
|
||||||
|
# return AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
|
||||||
|
|
||||||
|
# trainer = Trainer(
|
||||||
|
# args=training_args, # training arguments, defined above
|
||||||
|
# train_dataset=train_dataset, # training dataset
|
||||||
|
# eval_dataset=valid_dataset, # evaluation dataset
|
||||||
|
# model_init=model_init,
|
||||||
|
# compute_metrics=compute_metrics,
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
# # In[ ]:
|
||||||
|
|
||||||
|
|
||||||
|
# best_trial = trainer.hyperparameter_search(
|
||||||
|
# direction="maximize",
|
||||||
|
# backend="ray",
|
||||||
|
# n_trials=2,
|
||||||
|
# # Choose among many libraries:
|
||||||
|
# # https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
|
||||||
|
# search_alg=HyperOptSearch(mode="max", metric="accuracy"),
|
||||||
|
# # Choose among schedulers:
|
||||||
|
# # https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
|
||||||
|
# scheduler=ASHAScheduler(mode="max", metric="accuracy"),
|
||||||
|
# local_dir="tune_runs",
|
||||||
|
# )
|
||||||
|
|
Loading…
Reference in New Issue