add training script
This commit is contained in:
parent
b37798c477
commit
435eb54671
|
@ -0,0 +1,247 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Creating a Zero-Shot classifier based on BETO
|
||||
#
|
||||
# This notebook/script fine-tunes a BETO (spanish bert, 'dccuchile/bert-base-spanish-wwm-cased') model on the spanish XNLI dataset.
|
||||
# The fine-tuned model can then be fed to a Huggingface ZeroShot pipeline to obtain a ZeroShot classifier.
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
from datasets import load_dataset, Dataset, load_metric, load_from_disk
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
from transformers import Trainer, TrainingArguments
|
||||
import torch
|
||||
from pathlib import Path
|
||||
# from ray import tune
|
||||
# from ray.tune.suggest.hyperopt import HyperOptSearch
|
||||
# from ray.tune.schedulers import ASHAScheduler
|
||||
|
||||
|
||||
# # Prepare the datasets
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
xnli_es = load_dataset("xnli", "es")
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
xnli_es
|
||||
|
||||
|
||||
# >joeddav
|
||||
# >Aug '20
|
||||
# >
|
||||
# >@rsk97 In addition, just make sure the model used is trained on an NLI task and that the **last output label corresponds to entailment** while the **first output label corresponds to contradiction**.
|
||||
#
|
||||
# => We change the original `label` and use the `labels` column, which is required by a `AutoModelForSequenceClassification`
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# see markdown above
|
||||
def switch_label_id(row):
|
||||
if row["label"] == 0:
|
||||
return {"labels": 2}
|
||||
elif row["label"] == 2:
|
||||
return {"labels": 0}
|
||||
else:
|
||||
return {"labels": 1}
|
||||
|
||||
for split in xnli_es:
|
||||
xnli_es[split] = xnli_es[split].map(switch_label_id)
|
||||
|
||||
|
||||
# ## Tokenize data
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
|
||||
|
||||
|
||||
# In a first attempt i padded all data to the maximum length of the dataset (379). However, the traninig takes substanially longer with all the paddings, it's better to pass in the tokenizer to the `Trainer` and let the `Trainer` do the padding on a batch level.
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# Figured out max length of the dataset manually
|
||||
# max_length = 379
|
||||
def tokenize(row):
|
||||
return tokenizer(row["premise"], row["hypothesis"], truncation=True, max_length=512) #, padding="max_length", max_length=max_length)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
data = {}
|
||||
for split in xnli_es:
|
||||
data[split] = xnli_es[split].map(
|
||||
tokenize,
|
||||
remove_columns=["hypothesis", "premise", "label"],
|
||||
batched=True,
|
||||
batch_size=128
|
||||
)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
train_path = str(Path("./train_ds").absolute())
|
||||
valid_path = str(Path("./valid_ds").absolute())
|
||||
|
||||
data["train"].save_to_disk(train_path)
|
||||
data["validation"].save_to_disk(valid_path)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# We can use `datasets.Dataset`s directly
|
||||
|
||||
# class XnliDataset(torch.utils.data.Dataset):
|
||||
# def __init__(self, data):
|
||||
# self.data = data
|
||||
|
||||
# def __getitem__(self, idx):
|
||||
# item = {key: torch.tensor(val) for key, val in self.data[idx].items()}
|
||||
# return item
|
||||
|
||||
# def __len__(self):
|
||||
# return len(self.data)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
def trainable(config):
|
||||
metric = load_metric("xnli", "es")
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
predictions, labels = eval_pred
|
||||
predictions = predictions.argmax(axis=-1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir='./results', # output directory
|
||||
do_train=True,
|
||||
do_eval=True,
|
||||
evaluation_strategy="steps",
|
||||
eval_steps=500,
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="eval_accuracy",
|
||||
num_train_epochs=config["epochs"], # total number of training epochs
|
||||
per_device_train_batch_size=config["batch_size"], # batch size per device during training
|
||||
per_device_eval_batch_size=config["batch_size_eval"], # batch size for evaluation
|
||||
warmup_steps=config["warmup_steps"], # 500
|
||||
weight_decay=config["weight_decay"], # 0.001 # strength of weight decay
|
||||
learning_rate=config["learning_rate"], # 5e-05
|
||||
logging_dir='./logs', # directory for storing logs
|
||||
logging_steps=250,
|
||||
#save_steps=500, # ignored when using load_best_model_at_end
|
||||
save_total_limit=10,
|
||||
no_cuda=False,
|
||||
disable_tqdm=True,
|
||||
)
|
||||
|
||||
# train_dataset = XnliDataset(load_from_disk(config["train_path"]))
|
||||
# valid_dataset = XnliDataset(load_from_disk(config["valid_path"]))
|
||||
train_dataset = load_from_disk(config["train_path"])
|
||||
valid_dataset = load_from_disk(config["valid_path"])
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
tokenizer=tokenizer,
|
||||
args=training_args, # training arguments, defined above
|
||||
train_dataset=train_dataset, # training dataset
|
||||
eval_dataset=valid_dataset, # evaluation dataset
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
trainable(
|
||||
{
|
||||
"train_path": train_path,
|
||||
"valid_path": valid_path,
|
||||
"batch_size": 16,
|
||||
"batch_size_eval": 64,
|
||||
"warmup_steps": 500,
|
||||
"weight_decay": 0.001,
|
||||
"learning_rate": 5e-5,
|
||||
"epochs": 3,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# # HPO
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# config = {
|
||||
# "train_path": train_path,
|
||||
# "valid_path": valid_path,
|
||||
# "warmup_steps": tune.randint(0, 500),
|
||||
# "weight_decay": tune.loguniform(0.00001, 0.1),
|
||||
# "learning_rate": tune.loguniform(5e-6, 5e-4),
|
||||
# "epochs": tune.choice([2, 3, 4])
|
||||
# }
|
||||
|
||||
|
||||
# # In[ ]:
|
||||
|
||||
|
||||
# analysis = tune.run(
|
||||
# trainable,
|
||||
# config=config,
|
||||
# metric="eval_acc",
|
||||
# mode="max",
|
||||
# #search_alg=HyperOptSearch(),
|
||||
# #scheduler=ASHAScheduler(),
|
||||
# num_samples=1,
|
||||
# )
|
||||
|
||||
|
||||
# # In[ ]:
|
||||
|
||||
|
||||
# def model_init():
|
||||
# return AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
|
||||
|
||||
# trainer = Trainer(
|
||||
# args=training_args, # training arguments, defined above
|
||||
# train_dataset=train_dataset, # training dataset
|
||||
# eval_dataset=valid_dataset, # evaluation dataset
|
||||
# model_init=model_init,
|
||||
# compute_metrics=compute_metrics,
|
||||
# )
|
||||
|
||||
|
||||
# # In[ ]:
|
||||
|
||||
|
||||
# best_trial = trainer.hyperparameter_search(
|
||||
# direction="maximize",
|
||||
# backend="ray",
|
||||
# n_trials=2,
|
||||
# # Choose among many libraries:
|
||||
# # https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
|
||||
# search_alg=HyperOptSearch(mode="max", metric="accuracy"),
|
||||
# # Choose among schedulers:
|
||||
# # https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
|
||||
# scheduler=ASHAScheduler(mode="max", metric="accuracy"),
|
||||
# local_dir="tune_runs",
|
||||
# )
|
||||
|
Loading…
Reference in New Issue