2022-11-09 08:14:09 +00:00
---
license: apache-2.0
---
2022-11-09 08:32:22 +00:00
2022-11-09 08:39:57 +00:00
2022-11-09 09:38:40 +00:00
# Chinese-CLIP-ViT-Base-Patch16
2022-11-09 08:32:22 +00:00
## Introduction
This is the base-version of the Chinese CLIP. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP
2022-11-09 08:41:46 +00:00
## Use with the official API
2022-11-09 08:32:22 +00:00
We provide a simple code snippet to show how to use the API for Chinese-CLIP. For starters, please install cn_clip:
```bash
# to install the latest stable release
pip install cn_clip
# or install from source code
2022-11-09 08:35:27 +00:00
cd Chinese-CLIP
2022-11-09 08:32:22 +00:00
pip install -e .
```
After installation, use Chinese CLIP as shown below:
```python
2022-11-09 08:39:57 +00:00
import torch
2022-11-09 08:32:22 +00:00
from PIL import Image
import cn_clip.clip as clip
from cn_clip.clip import load_from_name, available_models
print("Available models:", available_models())
# Available models: ['ViT-B-16', 'ViT-L-14', 'ViT-L-14-336', 'ViT-H-14', 'RN50']
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = load_from_name("ViT-B-16", device=device, download_root='./')
model.eval()
image = preprocess(Image.open("examples/pokemon.jpeg")).unsqueeze(0).to(device)
text = clip.tokenize(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
# Normalize the features. Please use the normalized features for downstream tasks.
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
logits_per_image, logits_per_text = model.get_similarity(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probs:", probs) # [[1.268734e-03 5.436878e-02 6.795761e-04 9.436829e-01]]
```
However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference.
< br > < br >
## Results
2022-11-09 09:16:03 +00:00
**MUGE Text-to-Image Retrieval**:
2022-11-09 08:32:22 +00:00
< table border = "1" width = "100%" >
< tr align = "center" >
< th > Setup< / th > < th colspan = "4" > Zero-shot< / th > < th colspan = "4" > Finetune< / th >
< / tr >
< tr align = "center" >
< td > Metric< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > MR< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > MR< / td >
< / tr >
< tr align = "center" >
2022-11-09 09:16:03 +00:00
< td width = "120%" > Wukong< / td > < td > 42.7< / td > < td > 69.0< / td > < td > 78.0< / td > < td > 63.2< / td > < td > 52.7< / td > < td > 77.9< / td > < td > 85.6< / td > < td > 72.1< / td >
< / tr >
2022-11-09 08:32:22 +00:00
< tr align = "center" >
2022-11-09 09:16:03 +00:00
< td width = "120%" > R2D2< / td > < td > 49.5< / td > < td > 75.7< / td > < td > 83.2< / td > < td > 69.5< / td > < td > 60.1< / td > < td > 82.9< / td > < td > 89.4< / td > < td > 77.5< / td >
< / tr >
< tr align = "center" >
< td width = "120%" > CN-CLIP< / td > < td > 63.0< / td > < td > 84.1< / td > < td > 89.2< / td > < td > 78.8< / td > < td > 68.9< / td > < td > 88.7< / td > < td > 93.1< / td > < td > 83.6< / td >
< / tr >
2022-11-09 08:32:22 +00:00
< / table >
2022-11-09 09:16:03 +00:00
< br >
2022-11-09 08:32:22 +00:00
2022-11-09 09:16:03 +00:00
**Flickr30K-CN Retrieval**:
< table border = "1" width = "120%" >
2022-11-09 08:32:22 +00:00
< tr align = "center" >
< th > Task< / th > < th colspan = "6" > Text-to-Image< / th > < th colspan = "6" > Image-to-Text< / th >
< / tr >
< tr align = "center" >
< th > Setup< / th > < th colspan = "3" > Zero-shot< / th > < th colspan = "3" > Finetune< / th > < th colspan = "3" > Zero-shot< / th > < th colspan = "3" > Finetune< / th >
< / tr >
< tr align = "center" >
< td > Metric< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td >
< / tr >
< tr align = "center" >
2022-11-09 09:16:03 +00:00
< td width = "120%" > Wukong< / td > < td > 51.7< / td > < td > 78.9< / td > < td > 86.3< / td > < td > 77.4< / td > < td > 94.5< / td > < td > 97.0< / td > < td > 76.1< / td > < td > 94.8< / td > < td > 97.5< / td > < td > 92.7< / td > < td > 99.1< / td > < td > 99.6< / td >
< / tr >
< tr align = "center" >
< td width = "120%" > R2D2< / td > < td > 60.9< / td > < td > 86.8< / td > < td > 92.7< / td > < td > 84.4< / td > < td > 96.7< / td > < td > 98.4< / td > < td > 77.6< / td > < td > 96.7< / td > < td > 98.9< / td > < td > 95.6< / td > < td > 99.8< / td > < td > 100.0< / td >
< / tr >
2022-11-09 08:32:22 +00:00
< tr align = "center" >
2022-11-09 09:16:03 +00:00
< td width = "120%" > CN-CLIP< / td > < td > 71.2< / td > < td > 91.4< / td > < td > 95.5< / td > < td > 83.8< / td > < td > 96.9< / td > < td > 98.6< / td > < td > 81.6< / td > < td > 97.5< / td > < td > 98.8< / td > < td > 95.3< / td > < td > 99.7< / td > < td > 100.0< / td >
< / tr >
2022-11-09 08:32:22 +00:00
< / table >
2022-11-09 09:16:03 +00:00
< br >
2022-11-09 08:32:22 +00:00
2022-11-09 09:16:03 +00:00
**COCO-CN Retrieval**:
2022-11-09 08:32:22 +00:00
< table border = "1" width = "100%" >
< tr align = "center" >
< th > Task< / th > < th colspan = "6" > Text-to-Image< / th > < th colspan = "6" > Image-to-Text< / th >
< / tr >
< tr align = "center" >
< th > Setup< / th > < th colspan = "3" > Zero-shot< / th > < th colspan = "3" > Finetune< / th > < th colspan = "3" > Zero-shot< / th > < th colspan = "3" > Finetune< / th >
< / tr >
< tr align = "center" >
< td > Metric< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td > < td > R@1< / td > < td > R@5< / td > < td > R@10< / td >
< / tr >
< tr align = "center" >
2022-11-09 09:16:03 +00:00
< td width = "120%" > Wukong< / td > < td > 53.4< / td > < td > 80.2< / td > < td > 90.1< / td > < td > 74.0< / td > < td > 94.4< / td > < td > 98.1< / td > < td > 55.2< / td > < td > 81.0< / td > < td > 90.6< / td > < td > 73.3< / td > < td > 94.0< / td > < td > 98.0< / td >
< / tr >
2022-11-09 08:32:22 +00:00
< tr align = "center" >
2022-11-09 09:16:03 +00:00
< td width = "120%" > R2D2< / td > < td > 56.4< / td > < td > 85.0< / td > < td > 93.1< / td > < td > 79.1< / td > < td > 96.5< / td > < td > 98.9< / td > < td > 63.3< / td > < td > 89.3< / td > < td > 95.7< / td > < td > 79.3< / td > < td > 97.1< / td > < td > 98.7< / td >
< / tr >
< tr align = "center" >
< td width = "120%" > CN-CLIP< / td > < td > 69.2< / td > < td > 89.9< / td > < td > 96.1< / td > < td > 81.5< / td > < td > 96.9< / td > < td > 99.1< / td > < td > 63.0< / td > < td > 86.6< / td > < td > 92.9< / td > < td > 83.5< / td > < td > 97.3< / td > < td > 99.2< / td >
< / tr >
2022-11-09 08:32:22 +00:00
< / table >
2022-11-09 08:34:02 +00:00
< br >
2022-11-09 09:16:03 +00:00
**Zero-shot Image Classification**:
< table border = "1" width = "100%" >
< tr align = "center" >
< th > Task< / th > < th > CIFAR10< / th > < th > CIFAR100< / th > < th > DTD< / th > < th > EuroSAT< / th > < th > FER< / th > < th > FGVC< / th > < th > KITTI< / th > < th > MNIST< / th > < th > PC< / th > < th > VOC< / th >
< / tr >
< tr align = "center" >
< td width = "150%" > GIT< / td > < td > 88.5< / td > < td > 61.1< / td > < td > 42.9< / td > < td > 43.4< / td > < td > 41.4< / td > < td > 6.7< / td > < td > 22.1< / td > < td > 68.9< / td > < td > 50.0< / td > < td > 80.2< / td >
< / tr >
< tr align = "center" >
< td width = "150%" > ALIGN< / td > < td > 94.9< / td > < td > 76.8< / td > < td > 66.1< / td > < td > 52.1< / td > < td > 50.8< / td > < td > 25.0< / td > < td > 41.2< / td > < td > 74.0< / td > < td > 55.2< / td > < td > 83.0< / td >
< / tr >
< tr align = "center" >
< td width = "150%" > CLIP< / td > < td > 94.9< / td > < td > 77.0< / td > < td > 56.0< / td > < td > 63.0< / td > < td > 48.3< / td > < td > 33.3< / td > < td > 11.5< / td > < td > 79.0< / td > < td > 62.3< / td > < td > 84.0< / td >
< / tr >
< tr align = "center" >
< td width = "150%" > Wukong< / td > < td > 95.4< / td > < td > 77.1< / td > < td > 40.9< / td > < td > 50.3< / td > < td > -< / td > < td > -< / td > < td > -< / td > < td > -< / td > < td > -< / td > < td > -< / td >
< / tr >
< tr align = "center" >
< td width = "150%" > CN-CLIP< / td > < td > 96.0< / td > < td > 79.7< / td > < td > 51.2< / td > < td > 52.0< / td > < td > 55.1< / td > < td > 26.2< / td > < td > 49.9< / td > < td > 79.4< / td > < td > 63.5< / td > < td > 84.9< / td >
< / tr >
< / table >
2022-11-09 09:16:26 +00:00
< br >
2022-11-09 09:16:03 +00:00
2022-11-09 08:34:02 +00:00
## Citation
2022-11-09 08:39:57 +00:00
If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support!
2022-11-09 08:34:02 +00:00
```
@article {chinese-clip,
title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese},
author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang},
journal={arXiv preprint arXiv:2211.01335},
year={2022}
}
```
< br >