Compare commits

..

No commits in common. "cc63721791a6e1d60f4764997bbb311667ec75d8" and "58670260a454d0ae6edc17c9cc9095c8e70d9aab" have entirely different histories.

5 changed files with 30 additions and 46 deletions

1
.gitattributes vendored
View File

@ -15,4 +15,3 @@
*.pt filter=lfs diff=lfs merge=lfs -text *.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text *.pth filter=lfs diff=lfs merge=lfs -text
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
model.safetensors filter=lfs diff=lfs merge=lfs -text

View File

@ -4,8 +4,6 @@ datasets:
- Jean-Baptiste/wikiner_fr - Jean-Baptiste/wikiner_fr
widget: widget:
- text: "Je m'appelle jean-baptiste et je vis à montréal" - text: "Je m'appelle jean-baptiste et je vis à montréal"
- text: "george washington est allé à washington"
license: mit
--- ---
# camembert-ner: model fine-tuned from camemBERT for NER task. # camembert-ner: model fine-tuned from camemBERT for NER task.
@ -14,20 +12,9 @@ license: mit
[camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset. [camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset.
Model was trained on wikiner-fr dataset (~170 634 sentences). Model was trained on wikiner-fr dataset (~170 634 sentences).
Model was validated on emails/chat data and overperformed other models on this type of data specifically. Model was validated on emails/chat data and surperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case. In particular the model seems to work better on entity that don't start with an upper case.
## Training data
Training data was classified as follow:
Abbreviation|Description
-|-
O |Outside of a named entity
MISC |Miscellaneous entity
PER |Persons name
ORG |Organization
LOC |Location
## How to use camembert-ner with HuggingFace ## How to use camembert-ner with HuggingFace
@ -44,7 +31,7 @@ model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert
from transformers import pipeline from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True)
nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.") nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.")
@ -94,23 +81,27 @@ nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance d
## Model performances (metric: seqeval) ## Model performances (metric: seqeval)
Overall Global
```
precision|recall|f1 'precision': 0.8859
-|-|- 'recall': 0.8971
0.8859|0.8971|0.8914 'f1': 0.8914
```
By entity By entity
```
'LOC': {'precision': 0.8905576596578294,
'recall': 0.900554675118859,
'f1': 0.8955282684352223},
'MISC': {'precision': 0.8175627240143369,
'recall': 0.8117437722419929,
'f1': 0.8146428571428571},
'ORG': {'precision': 0.8099480326651819,
'recall': 0.8265151515151515,
'f1': 0.8181477315335584},
'PER': {'precision': 0.9372509960159362,
'recall': 0.959812321501428,
'f1': 0.9483975005039308}
entity|precision|recall|f1 ```
-|-|-|-
PER|0.9372|0.9598|0.9483
ORG|0.8099|0.8265|0.8181
LOC|0.8905|0.9005|0.8955
MISC|0.8175|0.8117|0.8146
For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:
https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa

View File

@ -12,19 +12,19 @@
"hidden_size": 768, "hidden_size": 768,
"id2label": { "id2label": {
"0": "O", "0": "O",
"1": "I-LOC", "1": "LOC",
"2": "I-PER", "2": "PER",
"3": "I-MISC", "3": "MISC",
"4": "I-ORG" "4": "ORG"
}, },
"initializer_range": 0.02, "initializer_range": 0.02,
"intermediate_size": 3072, "intermediate_size": 3072,
"label2id": { "label2id": {
"I-LOC": 1, "LOC": 1,
"I-MISC": 3, "MISC": 3,
"O": 0, "O": 0,
"I-ORG": 4, "ORG": 4,
"I-PER": 2 "PER": 2
}, },
"layer_norm_eps": 1e-05, "layer_norm_eps": 1e-05,
"max_position_embeddings": 514, "max_position_embeddings": 514,

BIN
model.onnx (Stored with Git LFS)

Binary file not shown.

BIN
model.safetensors (Stored with Git LFS)

Binary file not shown.