Update README.md
This commit is contained in:
parent
d0002b604e
commit
ef590151cc
45
README.md
45
README.md
|
@ -15,6 +15,17 @@ Model was trained on wikiner-fr dataset (~170 634 sentences).
|
||||||
Model was validated on emails/chat data and overperformed other models on this type of data specifically.
|
Model was validated on emails/chat data and overperformed other models on this type of data specifically.
|
||||||
In particular the model seems to work better on entity that don't start with an upper case.
|
In particular the model seems to work better on entity that don't start with an upper case.
|
||||||
|
|
||||||
|
## Training data
|
||||||
|
Training data was classified as follow:
|
||||||
|
|
||||||
|
Abbreviation|Description
|
||||||
|
-|-
|
||||||
|
O |Outside of a named entity
|
||||||
|
MISC |Miscellaneous entity
|
||||||
|
PER |Person’s name
|
||||||
|
ORG |Organization
|
||||||
|
LOC |Location
|
||||||
|
|
||||||
|
|
||||||
## How to use camembert-ner with HuggingFace
|
## How to use camembert-ner with HuggingFace
|
||||||
|
|
||||||
|
@ -81,29 +92,23 @@ nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance d
|
||||||
|
|
||||||
## Model performances (metric: seqeval)
|
## Model performances (metric: seqeval)
|
||||||
|
|
||||||
Global
|
Overall
|
||||||
```
|
|
||||||
'precision': 0.8859
|
precision|recall|f1
|
||||||
'recall': 0.8971
|
-|-|-
|
||||||
'f1': 0.8914
|
0.8859|0.8971|0.8914
|
||||||
```
|
|
||||||
|
|
||||||
By entity
|
By entity
|
||||||
```
|
|
||||||
'LOC': {'precision': 0.8905576596578294,
|
|
||||||
'recall': 0.900554675118859,
|
|
||||||
'f1': 0.8955282684352223},
|
|
||||||
'MISC': {'precision': 0.8175627240143369,
|
|
||||||
'recall': 0.8117437722419929,
|
|
||||||
'f1': 0.8146428571428571},
|
|
||||||
'ORG': {'precision': 0.8099480326651819,
|
|
||||||
'recall': 0.8265151515151515,
|
|
||||||
'f1': 0.8181477315335584},
|
|
||||||
'PER': {'precision': 0.9372509960159362,
|
|
||||||
'recall': 0.959812321501428,
|
|
||||||
'f1': 0.9483975005039308}
|
|
||||||
|
|
||||||
```
|
entity|precision|recall|f1
|
||||||
|
-|-|-|-
|
||||||
|
PER|0.9372|0.9598|0.9483
|
||||||
|
ORG|0.8099|0.8265|0.8181
|
||||||
|
LOC|0.8905|0.9005|0.8955
|
||||||
|
MISC|0.8175|0.8117|0.8146
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
A short article on how I used the result of this model to train a LSTM model for signature detection in emails:
|
A short article on how I used the result of this model to train a LSTM model for signature detection in emails:
|
||||||
https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
|
https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
|
||||||
|
|
Loading…
Reference in New Issue