Create README.md
This commit is contained in:
parent
d52ef03026
commit
0bf3738225
|
@ -0,0 +1,94 @@
|
|||
---
|
||||
license: apache-2.0
|
||||
tags:
|
||||
- vision
|
||||
- depth-estimation
|
||||
widget:
|
||||
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
|
||||
example_title: Tiger
|
||||
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
|
||||
example_title: Teapot
|
||||
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
|
||||
example_title: Palace
|
||||
---
|
||||
|
||||
# DPT-Hybrid
|
||||
|
||||
Dense Prediction Transformer (DPT) model trained on 1.4 million images for monocular depth estimation. It was introduced in the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by Ranftl et al. and first released in [this repository](https://github.com/isl-org/DPT). This repository hosts the "hybrid" version of the model as stated in the paper.
|
||||
|
||||
Disclaimer: The team releasing DPT did not write a model card for this model so this model card has been written by the Hugging Face team.
|
||||
|
||||
## Model description
|
||||
|
||||
DPT uses the Vision Transformer (ViT) as backbone and adds a neck + head on top for monocular depth estimation.
|
||||
|
||||

|
||||
|
||||
DPT-Hybrid diverges from DPT by using [ViT-hybrid](https://huggingface.co/google/vit-hybrid-base-bit-384) as a backbone and taking some activations from the backbone.
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
You can use the raw model for zero-shot monocular depth estimation. See the [model hub](https://huggingface.co/models?search=dpt) to look for
|
||||
fine-tuned versions on a task that interests you.
|
||||
|
||||
### How to use
|
||||
|
||||
Here is how to use this model for zero-shot depth estimation on an image:
|
||||
|
||||
```python
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
|
||||
|
||||
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
|
||||
|
||||
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas", low_cpu_mem_usage=True)
|
||||
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
# prepare image for the model
|
||||
inputs = feature_extractor(images=image, return_tensors="pt")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predicted_depth = outputs.predicted_depth
|
||||
|
||||
# interpolate to original size
|
||||
prediction = torch.nn.functional.interpolate(
|
||||
predicted_depth.unsqueeze(1),
|
||||
size=image.size[::-1],
|
||||
mode="bicubic",
|
||||
align_corners=False,
|
||||
)
|
||||
|
||||
# visualize the prediction
|
||||
output = prediction.squeeze().cpu().numpy()
|
||||
formatted = (output * 255 / np.max(output)).astype("uint8")
|
||||
depth = Image.fromarray(formatted)
|
||||
depth.show()
|
||||
|
||||
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).
|
||||
|
||||
### BibTeX entry and citation info
|
||||
|
||||
```bibtex
|
||||
@article{DBLP:journals/corr/abs-2103-13413,
|
||||
author = {Ren{\'{e}} Ranftl and
|
||||
Alexey Bochkovskiy and
|
||||
Vladlen Koltun},
|
||||
title = {Vision Transformers for Dense Prediction},
|
||||
journal = {CoRR},
|
||||
volume = {abs/2103.13413},
|
||||
year = {2021},
|
||||
url = {https://arxiv.org/abs/2103.13413},
|
||||
eprinttype = {arXiv},
|
||||
eprint = {2103.13413},
|
||||
timestamp = {Wed, 07 Apr 2021 15:31:46 +0200},
|
||||
biburl = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib},
|
||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||
}
|
||||
```
|
Loading…
Reference in New Issue