2020-06-12 13:27:33 +00:00
---
tags:
- translation
2022-07-14 08:56:05 +00:00
license: cc-by-4.0
2020-06-12 13:27:33 +00:00
---
2020-05-13 12:39:24 +00:00
### opus-mt-ru-en
2022-07-14 08:55:36 +00:00
## Table of Contents
- [Model Details ](#model-details )
- [Uses ](#uses )
- [Risks, Limitations and Biases ](#risks-limitations-and-biases )
- [Training ](#training )
- [Evaluation ](#evaluation )
- [Citation Information ](#citation-information )
- [How to Get Started With the Model ](#how-to-get-started-with-the-model )
## Model Details
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Transformer-align
- **Language(s):**
- Source Language: Russian
- Target Language: English
2022-07-14 08:56:05 +00:00
- **License:** CC-BY-4.0
2022-07-14 08:55:36 +00:00
- **Resources for more information:**
- [GitHub Repo ](https://github.com/Helsinki-NLP/OPUS-MT-train )
## Uses
#### Direct Use
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021) ](https://aclanthology.org/2021.acl-long.330.pdf ) and [Bender et al. (2021) ](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922 )).
Further details about the dataset for this model can be found in the OPUS readme: [ru-en ](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ru-en/README.md )
## Training
#### Training Data
##### Preprocessing
* Pre-processing: Normalization + SentencePiece
* Dataset: [opus ](https://github.com/Helsinki-NLP/Opus-MT )
* Download original weights: [opus-2020-02-26.zip ](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.zip )
* Test set translations: [opus-2020-02-26.test.txt ](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.test.txt )
## Evaluation
#### Results
2020-05-13 12:39:24 +00:00
* test set scores: [opus-2020-02-26.eval.txt ](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.eval.txt )
2022-07-14 08:55:36 +00:00
#### Benchmarks
2020-05-13 12:39:24 +00:00
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newstest2012.ru.en | 34.8 | 0.603 |
| newstest2013.ru.en | 27.9 | 0.545 |
| newstest2014-ruen.ru.en | 31.9 | 0.591 |
| newstest2015-enru.ru.en | 30.4 | 0.568 |
| newstest2016-enru.ru.en | 30.1 | 0.565 |
| newstest2017-enru.ru.en | 33.4 | 0.593 |
| newstest2018-enru.ru.en | 29.6 | 0.565 |
| newstest2019-ruen.ru.en | 31.4 | 0.576 |
| Tatoeba.ru.en | 61.1 | 0.736 |
2022-07-14 08:55:36 +00:00
## Citation Information
```bibtex
@InProceedings {TiedemannThottingal:EAMT2020,
author = {J{\"o}rg Tiedemann and Santhosh Thottingal},
title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld},
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)},
year = {2020},
address = {Lisbon, Portugal}
}
```
## How to Get Started With the Model
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
```