--- language: - fr thumbnail: tags: - zero-shot-classification - xnli - nli - fr license: mit pipeline_tag: zero-shot-classification datasets: - xnli metrics: - accuracy --- # camembert-base-xnli ## Model description Camembert-base model fine-tuned on french part of XNLI dataset.
One of the few Zero-Shot classification model working on french 🇫🇷 ## Intended uses & limitations #### How to use Two different usages : - As a Zero-Shot sequence classifier : ```python classifier = pipeline("zero-shot-classification", model="BaptisteDoyen/camembert-base-xnli") sequence = "L'équipe de France joue aujourd'hui au Parc des Princes" candidate_labels = ["sport","politique","science"] hypothesis_template = "Ce texte parle de {}." classifier(sequence, candidate_labels, hypothesis_template=hypothesis_template) # outputs : # {'sequence': "L'équipe de France joue aujourd'hui au Parc des Princes", # 'labels': ['sport', 'politique', 'science'], # 'scores': [0.8595073223114014, 0.10821866989135742, 0.0322740375995636]} ``` - As a premise/hypothesis checker :
The idea is here to compute a probability of the form \\( P(premise|hypothesis ) \\) ```python # load model and tokenizer nli_model = AutoModelForSequenceClassification.from_pretrained("BaptisteDoyen/camembert-base-xnli") tokenizer = AutoTokenizer.from_pretrained("BaptisteDoyen/camembert-base-xnli") # sequences premise = "le score pour les bleus est élevé" hypothesis = "L'équipe de France a fait un bon match" # tokenize and run through model x = tokenizer.encode(premise, hypothesis, return_tensors='pt') logits = nli_model(x)[0] # we throw away "neutral" (dim 1) and take the probability of # "entailment" (0) as the probability of the label being true entail_contradiction_logits = logits[:,::2] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = probs[:,0] prob_label_is_true[0].tolist() * 100 # outputs # 86.40775084495544 ``` ## Training data Training data is the french fold of the [XNLI](https://research.fb.com/publications/xnli-evaluating-cross-lingual-sentence-representations/) dataset released in 2018 by Facebook.
Available with great ease using the ```datasets``` library : ```python from datasets import load_dataset dataset = load_dataset('xnli', 'fr') ``` ## Training/Fine-Tuning procedure Training procedure is here pretty basic and was performed on the cloud using a single GPU.
Main training parameters : - ```lr = 2e-5``` with ```lr_scheduler_type = "linear"``` - ```num_train_epochs = 4``` - ```batch_size = 12``` (limited by GPU-memory) - ```weight_decay = 0.01``` - ```metric_for_best_model = "eval_accuracy"``` ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | Accuracy | | ---------- |-------------| | validation | 81.4 | | test | 81.7 |